Structural properties and energetics of Li2FeSiO4 polymorphs and their delithiated products from first-principles.
نویسندگان
چکیده
Structural properties, thermodynamic stability and delithiation process for Li(2)FeSiO(4) polymorphs are investigated by using density functional theory (DFT) within the DFT + U framework. Three Li(2)FeSiO(4) polymorphs crystallizing in space group Pmn2(1), P2(1)/n, and Pmnb have been considered. The investigations demonstrate that the strong Si-O bonds remain almost unchanged during the lithiation-delithiation process for all the polymorphs, which contribute significantly to the structural stability. On the other hand, the differences in local environment around FeO(4) tetrahedra will be translated into varying degrees of distortion, which shows a significant influence on the structural stability and average voltages. The average voltages obtained here are in good agreement with the experimental values. Furthermore, the possibility of extracting more than one lithium ions per formula unit from Li(2)FeSiO(4) of P2(1)/n is also discussed.
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کامل2 2 A pr 1 99 8 First - Principles Studies of Local Order in
A key to optimizing the growth of the new single-crystal relaxor ferroelectrics [1] is resolving basic questions concerning their structural properties and energetics. We report on initial first-principles total energy and force calculations, examining the energetics of local order in PZN type relaxors.
متن کاملFirst–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals
First principle calculations of nanolayered ZnO polymorphs (Wurzite–, Zincblende–, Rocksalt–structures) in the scheme of density functional theory were performedwith the help of full potential linear augmented plane wave (FP-LAPW) method. Theexchange - correlation potential is described by generalized gradient approximation asproposed by Perdew–Burke–Ernzrhof (GGA–PBE) and modified Becke–Johns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 20 شماره
صفحات -
تاریخ انتشار 2012